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In this white paper we look at how recent advances in knowledge-aided (KA) measurement tech-
niques can enhance the capability of radar imaging in dense scenes and complicated environments. 
Following the thinking of the fully-adaptive cognitive radar systems pioneered for military radars, 
but with an eye towards commercial autonomous vehicles (AVs), we propose an architecture for a 
lightweight form of highly-adaptive cognitive radar (HACR). We discuss how dynamic reallocation 
of the limited time and bandwidth resources of a cascaded multiple input multiple output (MIMO) 
radar provides flexible, adaptive, measurement; which provides greater resolution and extent - in 
angle, range, and Doppler - than could be possible with a static equivalent.

I. INTRODUCTION TO COGNITIVE
MEASUREMENT

The field of cognitive radar [1–3], and the broader
topic of cognitive measurement [4], is built on princi-
ples of using prior information to design measurement
to optimally exploit characteristics of both the channel
and target(s). Cognitive measurement relies on know-
ing, forming, and refining a complete model for the com-
plete multi-dimensional radar channel, environment, and
targets, and using this information to improve acquisi-
tion of targets of interest. By designing the information
transmitted (waveform(s)) and the channels in which it’s
transmitted (antenna gain pattern(s)) in context of prior
information about target types and locations, significant
improvements can be realized in the radar’s measurement
capacity [5, 6]. Such dynamic approaches are common in
communications, with the channel-sounding used in wire-
less communication as the most ubiquitous example. Yet,
such use is recent in radar.

Cognitive measurement techniques share a heritage
with forms of adaptive digital signal processing (ADSP),
especially techniques that utilize priors. However, in con-
trast to ADSP, which seeks to improve extraction of in-
formation from an existing measurement, cognitive radar
uses prior information to actively design the interroga-
tion signal(s), e.g the measurement matrix. The knowl-
edge used often exists outside the radar data chain, and
can include both endogenous and exogenous sources. Ex-
amples include historical/statistical data repositories, lo-
cational/positional information, and data streams from
other sensors. The goal of this is improvement in the
acquisition of the signal(s) of interest. In radar, those
signal(s) of interest are reflections off target(s) of inter-
est, measured against a background that obscures those
signals - whether the hindrance comes from noise, in-
terference, clutter, or other sources. (For convenience
we’ll use Signal-to-Clutter-plus-Interference-plus-Noise-
Ratio SCINR, regardless of the source(s) of interference).

FIG.1 presents the basic cognitive radar approach,
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in context of a generalized radar system. Information
about the channel and target(s) is contained in knowl-
edge repositories - information such as maps, historical
data, and real-time sensor data. This is consumed by
a KA coprocessor, which uses that information to ad-
just free parameters within the synthesizer (modifying
time-voltage spectral content) antennas (modifying the
beam/null-forming spatial layer), and receiver process-
ing.

FIG. 1. Architecture of the cognitive measurement tech-
nique. Knowledge from repositories is used by a KA co-
processor to adjust the measurement matrix formed through
the transmit-receive chain; controlling both the time/spectral
content ((waveform(s)), and the spatial content at the phys-
ical layer (antenna patterns), as well as traditional ADSP
throughout the receive chain.

The general form of the measurement equation is

ḡ = ¯̄Hf̄ + n. (1)

where f̄ is a vectorized scene, ¯̄H is a measurement matrix,
n is an additive noise term ḡ is the resulting measurement
vector.

The greater the DoF’s along all portions of this
chain, the larger the parameter space available to ex-
ploit in optimization of H. Of course, no matter the qual-
ity/quantity of the knowledge repository, perfect knowl-
edge of the channel and target are unobtainable, and in
practice all KA approaches are a type of prior estima-
tion. However, real-world testing shows dramatic im-
provement in the overall extraction of signal(s) of inter-
est. FIG.2 evidences this point, presenting results for one
radar operating in a series of A/B testing with and with-
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FIG. 2. Data from the DARPA KASSPER challenge, giving
an example of the performance improvement possible using
knowledge-aided techniques. Receiver operating characteris-
tic (ROC) curves are shown for three KA variants developed
by GRTI (prefix “KAPE”) with a traditional post-Doppler
STAP approach (prefix “EFA”). The clairvoyant unobtain-
able optimum is also plotted (prefix “STOP”). Reprinted
with permission from the author[3]

out knowledge-aided techniques. The increase in the re-
ceiver operating characteristic (ROC) curve is dramatic.

It should be pointed out that these KA techniques im-
prove the performance of a radar defined by a certain set
of parameters/attributes that reflect its hardware real-
ization. Attributes can include transmit power, receiver
noise figure, number of channels and bandwidth (BW),
and antenna sizes and efficiencies. Improvement in the
SCINR could certainly be obtained through escalation
of those performance-constraining hardware blocks; e.g.
simply making a higher-power radar. However, in many
cases these attributes have already been driven to the
limits of what the application can realistically support,
driven by bounds on cost, size weight, and/or power
(C-SWAP). The KA approach, on the other hand, po-
tentially only requires additional software (possibly sup-
ported by additional computation power). In analysis of

specific cases in [7], KA design of Htx(Ẽi(t)) resulted in
between 7 to 24dB of improvement in SCINR (depend-
ing on waveform compression ratio). Achieving similar
increase through hardware upgrades (ERP, G/T, etc),
would be a significant undertaking, and dramatically in-
crease the cost of the radar hardware. This points to the
admission that all measurement systems are subject to
some bound on the resources used to realize them. Cog-
nitive measurement is a suite of techniques that get more
performance out of the same resources through intelligent
dynamic tasking.

As we’ll see in the next section, design of high-
resolution imaging radars face a daunting resource chal-
lenge, and solving the problem through brute-force seems
incompatible with commercial C-SWAP constraints. The
possibility that KA techniques could act as a force-

multiplier on limited resources for this application is com-
pelling. While there is certainly a cost to implement-
ing the control and feedback loops required for cogni-
tive measurement, that cost is small in comparison to
the improvement they offer. After framing the imag-
ing radar resource problem, we’ll propose an architec-
ture for a highly-adaptive cognitive radar that - while
not as powerful as the fully-adaptive approaches in [1] -
is aligned with the constraints and requirements of com-
mercial AV’s.

II. HIGH-RESOLUTION RADAR IMAGING

Electronically scanned array (ESA)-based radars na-
tively collect information in four basis vectors: range,
Doppler, and spherical angle (azimuth and elevation).
However, measurement capacity is rarely uniform across
these. Range and Doppler extent and resolution are pri-
marily defined by the waveform, which is limited by the
system bandwidth of the receiver(s) and the time ex-
tent of the waveform (T). The product of these is the
time-bandwidth-product (TBP), a key metric of radar
performance. In modern radars the resulting 2D range-
Doppler matrix (RDM) over the full coherent processing
interval can easily be hundreds of thousands of points.
Multiple receivers can be combined to increase the RDM
area, although it’s more typical that multiple receivers
are employed as spatial sampling for angular resolution.

In the angle basis, achieving a desired resolution over
a field-of-view (FOV) requires Nyquist-complete spatial
sampling, with phase centers spaced at no less than the
transverse wave-vector 1/(2k⊥) [8]. In order not to de-
grade waveform capacity, each of these phase centers
must receive the full TBP, resulting in a large number
of RF channels on transmit, receive, or both. FIG.3 il-
lustrates the situation, presenting a table of the required
sampling phase centers to form a Nyquist-complete aper-
ture with a given angular resolution in both azimuth
and elevation over a desired FOV (where we assume
the element array-factor has been designed to deal with
grating lobes outside the FOV). To date, it has been
impractical for commercial radars to realize these large
RF-channel counts, though modern military active elec-
tronically scanned array (AESA) radars routinely have
thousands of elements [9, 10]. Sparse or thinned an-
tenna arrays with sub-Nyquist spatial sampling offer
some respite, but thinning increases the array side-lobes,
effectively reducing the dynamic range in the angular ba-
sis [11, 12]. Numerically optimized sparse arrays have
been able to reduce channel count by 20% to 50%, while
still maintaining better than 20dB of peak-side-lobe-
level (PSLL) dynamic range over the majority of k-space
[13, 14]. In all cases, the greater the instantaneous FOV
of the array, the more difficult it becomes to design a
sparse array with low PSLL. One approach some modern
AESA’s employ, and which a cognitive radar can lever-
age, is to design an array with high resolution over a nar-
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row instantaneous field of view, and electronically scan
this over a larger field-of-regard.

FIG. 3. Number of sampling phase centers (physical or vir-
tual) required for a Nyquist-complete aperture with a given
angular resolution and field-of-view. Highlighted cells show
typical values for long-range and short-range ADAS radars
(in gray), and what’s often requested for Level 4+ AVs (in
blue)

Recently, progress on the challenge of implementing
large numbers of channels has been made by synthe-
sizing a greater number of virtual phase centers from
a given set of physical transceivers, using MIMO tech-
niques [15, 16]. Given M transmitters and N receivers,
MIMO enables the synthesis of up to MxN “virtual”
phase centers, through the use of orthogonal transmit-
ted waveforms. This approach offers a fairly dramatic
reduction of the transceiver channels required to achieve
a given angular span. However, all variants of MIMO fun-
damentally represent a “re-use” of the TBP of the radar,
either time (TDMA) or bandwidth (FDMA or CDMA) -
depending on the orthogonality basis - and this re-use of
the TBP comes at a cost of degraded RDM. FIG.4 plots
the total mean self-interference for a CDMA radar assum-
ing ideal codes and perfectly incoherent cross-correlation
(xC) (both of which are unachievable, and in practice the
xC will be worse than this). Just as in communications,
the more users of a given spectrum, the less un-polluted
bandwidth is available to each. In radar, the larger the
MIMO virtualization in terms of the number of simulta-
neous transmitters, the more cross-channel interference
reduces the measurement dynamic range. While in many
cases trading degraded RDM for improved angular res-
olution is a net-win, it can also obscure micro-Doppler
or range-profile features critical for classification. Like so
many other design options, MIMO is a trade-off.

In many historical applications of radar, limited an-
gular resolution has not been an issue due to the re-
liance on super-resolution algorithms - with monopulse
the best-known of these. When the radar scene to be
measured is canonically sparse (e.g. small number of ob-
jects in an empty airspace) or has been sparsified through
some assumption-set (e.g. only a small number of fast-
moving targets) that information can be used to estimate
the angle-of-arrival of targets with an accuracy greater
than the antenna resolution. In well-calibrated sys-
tems, super-resolution can achieve accuracy/resolution

FIG. 4. Total average cross-correlation level for a coded
MIMO radar using ideal codes, as a function of the code
length and number of simultaneous inputs. This cross-
correlation appears as interference in the basis of orthogo-
nality (range-basis for fast-time-coded (e.g. PSK radar), or
Doppler-basis for slow-time-coded (e.g. FMCW radar)).

improvement ratios of 100:1 or more [17]. However,
these methods - often eigenspace estimation methods [18]
- are strongly reliant on the validity of underlying as-
sumptions about the sparsity of f̄ and any regulariza-
tion techniques applied. In the dense driving scenes for
AV level 4+, the validity of these assumptions are highly
suspect. Additionally, the computational cost of super-
resolution algorithms can be significant, especially meth-
ods which attempt to handle poorly conditioned matri-
ces. As a result of these factors, super-resolution ap-
proaches have a bound on the number of simultaneous
detections that can be processed. Modern ADAS radars
often only handle tens of detections [19], and imaging
radars relying on super-resolution with scaled-up com-
putation can handle hundreds to thousands[20]. Unfor-
tunately, this number is significantly less than the num-
ber meaningful points which can exist in a typical scene
f̄ (the space-bandwidth product), which means informa-
tion is being truncated/lost. Whether this information
is critical to the AV depends on the exact details of the
algorithm(s) and nature of the scene(s). However, in all
cases, the takeaway is that super-resolution is a tool to
be used judiciously, and antenna (Rayleigh) resolution is
likely preferable when it can be achieved.

The above has presented some picture of the challenges
of achieving a high-performance imaging radar, and the
engineering trade-offs that are made between angular res-
olution and extent, transceiver channel count, and range-
Doppler resolution and extent. Cognitive techniques help
with the imaging problem by allowing trade-offs to be
made in real time.
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III. COGNITIVE RADAR FOR AUTONOMOUS
VEHICLES

When seeking to apply these techniques developed by
DARPA for high-end military radar systems to commer-
cial applications, it is important to take a sober look at
constraints and compatibility. While the fully-adaptive
approaches outlined in [1] are impressive, they also im-
pose serious requirements on system hardware and users.
Though AV’s are outfitted with high-end specialized pro-
cessors, the total compute capability still pales in com-
parison to many battlefield systems. Radar processing
techniques like space-time adaptive processing (STAP)
are often executed in banks of top-of-the-line FPGA pro-
cessors, and the addition of KA further escalates the re-
quired computing. Additionally, it is unrealistic to ex-
pect designers and operators of AV’s to be experts in
radar; and the DoFs available in fully-adaptive waveform
design and ESA beamforming are a double-edge sword.
To make these cognitive techniques commercially acces-
sible, operational details need to be abstracted and the
control simplified. While this has the unfortunate side-
effect of reducing the total number of DoF’s and trun-
cating some KA pathways, one still gains significant ad-
vantage even in a greatly simplified architecture.

A first consideration is to examine the nature and
location of knowledge repositories. AV’s have tremen-
dous quantities of information available to them: High-
definition maps, historical/statistical databases, real-
time vehicle-to-vehicle (V2V) communications, and an
extensive suite of other sensors — all of which is prime
for KA exploitation. Indeed, most AV Software Stacks
(AVSS) already employ some KA approaches, even if se-
mantics may differ, in their data processing and sensor
fusion. Looking back at FIG.1, the classical cognitive ar-
chitecture implies that both endogenous and exogenous
data is made available internal to the radar, where a
KA coprocessor works alongside the radar scheduler to
define and direct measurement. In an AV system, this
architecture would be incongruous. Given the quantity
and nature of the information, passing all of it to the
radar would require duplication of significant data band-
width, storage, and compute. Instead, the more logical
approach is to move the KA control block to where the
information (and compute) already resides — outside the
radar.

FIG.5 illustrates such an architecture, where control
and analysis APIs are placed inside the AVSS. The dif-
ferences are subtle but impactful. First, the existence
of an external control loop is very different from the
uni-directional flow of traditional (non-cognitive) sen-
sors, which only permit slow-time changes of configura-
tion/modes. A human analogy of “Brain” and “Eyes” (a
common theme in cognitive measurement) helps explain
both the utility and and design philosophy. Human eyes
behave as dynamically taskable sensors, in much the same
way as a cognitive radar does, but the decisions of where
and when to look reside firmly in the brain. In an AV,

FIG. 5. Knowledge repositories and control flow for a cog-
nitive AV radar. The control loop through the AVSS allows
sensor feedback actions from all layers of the driving stack,
many of which are reminiscent of human responses. Informa-
tion about driving decisions (e.g. “turn left ahead”) can be
used to task the radar in ways that are reminiscent of an-
ticipation. Tasking from state-estimation layers can be used
as reaction (e.g. emergency breaking maneuver). Perception
layers can task the radar for confirmation (e.g. tie-breaker on
Probpedestrian ).

the brain is the AVSS, and all decisions of how to modify
¯̄H should be made there. The radar sensor acts as the
eyes, and its role is to execute measurement as tasked by
the brain.

This leads to an interesting point: taking an overall
view of AV system control and data flow, “smart sen-
sors” are the opposite of what’s desired. It’s no more

logical for the radar to select ¯̄H than it is for your eyes to
decide where to look. Smart sensors make sense when de-
cision making needs to be done at the edge for reasons of
upstream bandwidth; but modern AVs have high-speed
interconnects that allow low-level data to be returned
to the AVSS for processing [21]. Putting aside business
considerations of value-chain ownership, the strongest
systems-level solution is to perform as much analysis &
control within the AVSS core as possible, and the HACR
architecture pursues this objective.

Another serious consideration is cost. To date, cog-
nitive radars have been expensive. Some of this is the
compute required to perform KA processing, but a great
deal is due to the hardware required to execute arbitrary
control over tx & rx DoF’s. The existing automotive mar-
ket is extremely cost sensitive, and while the increased
value of full autonomy is expected to dramatically shift
some cost structures, pricing pressure will certainly re-
main [22]. ADAS radars achieve their breakthrough low
cost-points thanks in large part to integrated MMICs
produced in extremely high volumes by leading chipset
manufacturing companies (Texas Instruments, NXP, In-
fineon). In order to meet realistic cost-points, a cog-
nitive AV radar needs to be designed to leverage such
MMICs; preferably using existing chipsets given the enor-
mous costs to qualify a new design to automotive stan-
dards, and the fact that cost savings are not realized
until volume-sales are successful. MMICs can further
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limit cognitive capabilities, especially as their cost-driven
design strips away functionality not needed for ADAS
radars.

Whatever MMICs are used, their operation needs to
be synchronized with the rest of the system. Continu-
ing down the architectural path started in FIG.5, FIG.6
presents block decomposition of how the control is im-
plemented. A single “schedule execution” block internal

to the radar abstracts all ¯̄H DoF’s in the tx & rx chain,
including MMIC functions and ESA beamforming. Valid
DoF combinations are pre-computed and stored as a li-

brary of possible ¯̄H. This approach has the advantage

that, unlike in a fully-adaptive radar, the set of ¯̄H is
bound and can be fully verified in production - a ne-
cessity for certain tiers of automotive QA. However, the
obvious downside is that pre-computation does not allow

for fine tuning of ¯̄H to exploit target/channel models. Of

course, the production ¯̄H library can be augmented over
time to fit known archetypes (possibly with over-the-air
updates).

FIG. 6. HACR control architecture based on a schedule ex-
ecutor employing nested ¯̄H lists. DoFs in the tx and rx chains
are abstracted, presenting a single “knob” interface.

To operate the radar, the external control API ar-

ranges ¯̄H entries into sequence lists, which are stored
locally to the radar. The sole role of the sequence ex-
ecutor is to run these lists as a “dumb” state machine,
and respond to any change-commands from the control
API. Lists can be updated in real time, or created in
advance (advantageous for scriptable events like “unpro-
tected left turn”). Lists can be cascaded (linked finish-
to-start) and timed (for start and/or stop); and at any
time the control API can switch from any one list to any
other. This control architecture follows four main design
principles that reflect the needs of AVs: 1) Responsive:
the radar should respond near-instantaneously, 2) Min-
imalist: making small adjustments to operation should
require only small control effort, 3) Scriptable: measure-
ment sequences should adhere to timelines, mirroring the
behaviors of path-planning and state-extrapolation in the
AVSS, 4) Self-sustaining: the radar should not require
constant control input if no changes are required.

This section has presented many of the control-flow
and hardware abstraction drivers behind the reduction
from fully-adaptive to highly-adaptive cognitive radar for

AVs. At this time, it’s unlikely any fully-adaptive system
could be realized that meets the needs and constraints of
the automotive community, either in terms of C-SWAP
or operational overhead. However, the highly-adaptive
system proposed represents a significant leap-forward in
terms of raw measurement capacity.

IV. HACR RADAR: EXAMPLE AV
SCENARIOS

In this last section, we put the entire picture together
and walk through cognitive radar interrogation of two no-
tional self-driving scenarios. The scenes concocted have
a large number of factors happening simultaneously, as
it helps to depict the range of measurement adaptation
that’s possible. In terms of beamforming and waveform

design, the ¯̄H presented are notional, as a quantitative
presentation is beyond the scope of this introductory pa-
per; which instead seeks to show qualitatively how dy-
namic KA-tasking allows for a greater measurement ex-
tent, and how such tasking might operate.

To set context, it’s worth giving basic constitutive re-
lations governing any FMCW MIMO radar (for brevity,
we assume basic proficiency with nomenclature, but refer
to [23].)

∆R ∝ 1

BW
=

1

αtPRI

Rinst ∝
1

α
RMUR ∝ tPRI

RSCNR ∝ Np∆R

∆V ∝ tCPI

VMUV ∝
1

tPRI

fFPS ∝
1

tCPI
=

1

NptPRI

xCMIMO ∝
logNtx

logNp

Competing constraints are immediately obvious. In-
creasing chirp rate α helps range resolution (smaller ∆R)
while hurting maximum detection range Rinst. Increas-
ing tPRI improves unambiguous range but hurts unam-
biguous velocity VMUV . Increasing tCPI , either through
Np or tPRI , improves Doppler resolution ∆V but de-
creases frame-rate fFPS . All of the trade-offs are tied
to the receiver(s) bandwidth(s) and slow & fast wave-
form timelines. These relations are slightly modified for
other modulation-modulation/waveforms schemes, such
as PMCW or Pulse, but the fundamental challenge of
resource constraints is unchanged. It is the job of the
KA cognitive radar scheduler to decide how to deploy
these limited resources in pursuit of optimal-utility mea-
surement, at each moment in time and across the entire
scene of interest.
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In the first scenario presented in FIG.7, a passenger
AV is depicted in an urban environment. We imagine
notional cognitive tasking below:

• In gray: A fast-update background scan covers a
wide FOV (possibly with a set of measurements).
This covers the maximum azimuth extent the radar
is capable of, and is continuously leveled/aligned
in elevation with the road. In order to achieve
high frame rate fFPS , Doppler resolution is sac-
rificed. Long-range instrumentation is traded for
high range-resolution. No KA/prior-information is
considered to be used in this, but the short tCPI

means that this measurement can be repeated of-
ten without significantly impacting radar timelines.
In this way, the gray scan serves as a KA in-
put, identifying objects for additional/refined mea-
surement. Data from different/sequential measure-
ments should be associated/fused within the AVSS
perception stack.
• In red: A long-range measurement, directed down

the road. Instrumented range is emphasized, at the
expense of range resolution. Only modest Doppler
resolution is required, though a high unambiguous
Doppler is desired in order to quickly assess closing
speeds. HD maps are used to align the measure-
ment with the road.
• In blue: A measurement designed to probe

under bridges and lamp/sign posts for road-
clearance. The scan FOV is expanded in eleva-
tion to cover both the road surface as well as the
bridge/stoplight. Good range and Doppler resolu-
tion improve signal-to-clutter-ratio, and help with
separation. HD maps provide prior-knowledge of
the location of such objects, and accumulated his-
torical/statistical data on the radar return signa-
ture can be used to strengthen analysis discrimina-
tion.
• In green: A classification & tracking measurement,

focusing on pedestrians. Short range is acceptable,
and this can be traded for improved range resolu-
tion. Long coherence times are used to provide fine
micro-Doppler information, and slow-time coded
MIMO modes are avoided to provide the maximum
interference-free dynamic range. Extended FOV is
not required for classification, and a single narrow
look-direction may suffice. Once confidently clas-
sified, tracking can be performed with a modified
measurement that gives up Doppler resolution in
favor of a faster update rate (or frees-up timeline
resource for other measurements.)
• In yellow: A measurement designed specifically to

watch vehicles making unprotected left/U-turns.
HD maps combined with historical/statistical traf-
fic pattern data provide KA context that this is a
critical area, and the gray short-range scan identi-
fies geostationary object. This drives the tasking of
a measurement with as-necessary range (dynamic
decision) and ultra-high range resolution. Because

the left turn maneuver will be nearly tangential to
the ownship trajectory, geo-translated Doppler res-
olution may be unreliable as an indicator of mo-
tion, and instead maximum update rate on high
range resolution is used. Combined with a FOV
that eclipses the car body, time analysis of these
clustered measurements provide a good indicator
if/when the vehicle begins it’s turning maneuver.

FIG. 7. Cognitive measurement through knowledge-aided
beamsteering. A notional urban scene in which the AV in-
terleaves long range measurement of, micro-Doppler measure-
ment of, and fast-scan across a wide FOV.

In the second scenario presented in FIG.8, a transport
AV is depicted in a highway environment. We imagine
notional cognitive tasking as follow:

• In gray: A fast-update background scan (set
of measurements), similar to the one utilized in
FIG.7, but with slightly longer range due to the
speeds/distances relevant to the highway scenario.
In addition, the hills require that the fan-beam is
continually adjusted in elevation to maintain cov-
erage. Alternately, the scan could be broadened
in elevation to fully overlap with the HD-maps ad-
justed road projection.
• In red: A pair of long-range measurements, di-

rected down the road. As above, long instrumented
range is emphasized. HD maps are again used to
align the measurement with the road, this time in
both azimuth and elevation. In this scenario the
AV is intending to exit via the off-ramp, and so as
the off-ramp is approached the AVSS path-planning
layer begins tasking a second-long range measure-
ment (our “anticipation” anthropomorphism). As
the AV performs its exit, alignment of the off-ramp
measurement is smoothly & continuously main-
tained. And at some point, the first down-road
measurement can be stopped, freeing up resources.
• In blue: A measurement designed specifically to

probe height for clearance. If under-sign lane ob-
struction is not a worry (or has been otherwise
addressed), the FOR need only straddle the sign.
This can be made a single-snapshot measurement,
and once height is measured/confirmed it can be
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added to repositories (local, and uploaded to fleet-
wide/global) for future use.
• In yellow: A measurement monitoring an adjacent-

lane car. Instrumented range is not required, but
very high range and Doppler resolution are desired,
along with low latency. Depending on the radar
hardware, special considerations might also need
to be made due to ultra-short range (e.g. provi-
sioning for filtering or blind-ranges). In order to
minimize latency, it may even be desirable to have
fast-time data-vectors output directly to the AVSS
rather than wait for slow-time Doppler FFT, which
allows the AVSS to use of multiple banks of convo-
lutional or rolling-STFT processing.

FIG. 8. Cognitive measurement through knowledge-aided
beamsteering. A notional highway scene in which the AV
interleaves long-range measurement of car-tracking with fine
range and Doppler accuracy, elevation height finding.

V. SUMMARY

The primary goal of all AV systems is safety. A dra-
matic decrease in accidents is central to the expected
economic impact that is driving investment, and until
AVs are able to safely and independently operate in di-
verse conditions - environmental, geographic, and situ-
ational - they will remain an open-ended research field
for academics and a cost-center for businesses. Achiev-
ing that safety will require significant improvements in
many different areas, including but not limited to, Ma-
chine Learning perception, decision algorithms, hardware
& software certification, vehicle maintenance & logistics,

and policy. Amongst this litany of challenges, the perfor-
mance of sensors is just one small piece of the puzzle; but
it’s a cornerstone piece. Sensors are the connection to the
real-world, and troves of sensor data are the foundation
of the ML approaches underwriting this age of autonomy.
If sensors aren’t up to the task, everything else is bound
to fail; and its nearly tautological that “you cannot react
to what you did not measure”. Even when it’s not the
longest pole, higher quality and quantity of information
flowing into the system from sensors can only make the
situation better (though it could also point to the need
for increased compute capability to consume that data).

The challenge for sensors - all sensors, not just radar -
is that the total information relevant to driving exceeds
the acquisition capacity of anything humankind has built.
This is in large part due to the dynamic nature of the
problem: everything is in motion and sensing require-
ments change from moment to moment. For example:
it’s possible to build excellent low-light cameras, and it’s
possible to build excellent day-light cameras, but cover-
ing the dynamic range of both simultaneously is exceed-
ingly difficult. The obvious (and existing) solution is to
extend total dynamic range by adding adaptability; e.g.
an iris or adjustable filter. This dynamic range problem
is not unique to man-made hardware, and biology has
evolved a similar set of solutions: the true strength of
the human eye is its adaptive dynamic range and taska-
bility [24, 25].

As we seek to follow the lead of biology, cognitive mea-
surement provides an overarching philosophy and math-
ematical framework for the path. As with many new
approaches, it will take some exploration find the “right-
fits” for early applications, and the hardware and com-
pute required for fully-adaptive approaches may be be-
yond the reach of commercial systems for yet some time.
The HACR architecture presented in this paper is an
initial effort to reduce and simplify cognitive enough to
bring it within reach of AVs operating at level 4 and 5;
those with the greatest need and highest value proposi-
tion. However, the radar hardware is only one-half of
the HACR system, and ultimately the degree of perfor-
mance improvement realized in-field will depend on the
breadth and depth of knowledge mined, and the extent
to which the AV software layers actively use this knowl-
edge to refine measurement. When sensor hardware and
AVSS work together closely, exploiting a fast feedback
and control loop, the combined system is capable of dra-
matically expanding the scene information which is made
accessible to perception.
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